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Abstract

We develop a version of variational inference for Bayesian count response regression-type
models that possesses attractive attributes such as convexity and closed form updates. The
convex solution aspect entails numerically stable fitting algorithms, whilst the closed form
aspect makes the methodology fast and easy to implement. The essence of the approach is the
use of Pólya-Gamma augmentation of a Negative Binomial likelihood, a finite-valued prior on
the shape parameter and the structured mean field variational Bayes paradigm. The approach
applies to general count response situations. For concreteness, we focus on generalized linear
mixed models within the semiparametric regression class of models. Real-time fitting is also
described.

Keywords: Generalized additive models; generalized additive mixed models; Negative Bino-
mial regression; Pólya-Gamma augmentation; real-time semiparametric regression; structured
mean field variational Bayes.

1 Introduction

Variational approximation is an alternative to Monte Carlo methods for Bayesian inference
and can be useful in applications where speed and scalability are at a premium. For count
response semiparametric regression, Luts & Wand (2015) provided variational inference algo-
rithms using a fixed form, or semiparametric, mean field variational Bayes approach. Despite
its good accuracy, the non-convexity of fixed form approaches can lead to numerical problems.
For example, in the simulation study described in Section 3 of Wand & Yu (2022), the fixed
form variational approach to Poisson nonparametric regression failed to converge properly in
13.6% of the replications. In this article we devise a variational inference approach for which
all component optimization problems are convex. The Luts & Wand (2015) methodology also
involved some numerical integration steps, whereas our new approach has totally closed form
updates. These attributes lead to fast and stable algorithms that are easy to implement.

Our approach to variational inference for count response semiparametric regression has
similarities with the binary response model approaches of Jaakola & Jordan (2000) and Durante
& Rigon (2019). For a given model the coordinate ascent updates in these two articles are
identical, but the latter makes use of Pólya-Gamma augmentation (e.g. Polson et al., 2013)
which has the advantage of couching the algorithm within the ordinary mean field variational
Bayes framework. As explained in, for example, Pillow & Scott (2012) and Zhou et al. (2012)
Pólya-Gamma augmentation can also aid the fitting of Bayesian regression-type models with
Negative Binomial likelihoods. An additional difficulty compared with the binary response
setting is approximate Bayesian inference for the Negative Binomial shape parameter, which
we denote here by κ. We deal with this problem via a structured mean field variational Bayes
approach (e.g. Saul & Jordan, 1996; Wand et al. 2011). This involves restriction of κ to a finite set
and performing a variational version of Bayesian model averaging, where individual models
correspond to the atoms of the prior distribution of κ. Since κ is more of a nuisance parameter,
and any finite set can be specified, there is little cost to this discretisation of κ.
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Apart from Luts & Wand (2015), we are aware of some other approaches to variational in-
ference for count response regression-type models. In particular, Zhou et al. (2012) and Miao et
al. (2020) each contain variational inference algorithms which are also based on Pólya-Gamma
augmentation of Negative Binomial likelihoods. Their approaches make use of Logarithmic
series or, equivalently, Chinese Restaurant Process, representations of Negative Binomial re-
sponse models. However, when this representation is combined with Pólya-Gamma augmen-
tation there is no single joint distribution to which minimum Kullback-Leibler divergence, the
underpinning of mean field variational Bayes, is being applied. In addition, the square-root
quantity that arises in the tilting parameter of the Pólya-Gamma q-density, such as the ξ

(t)
i

quantity in Algorithm 2 of Durante & Rigon (2019) and the cq(α|κ) quantity in Algorithm 1 of
this article, is absent from the Zhou et al. (2012) and Miao et al. (2020) algorithms. Our im-
plementations of the Miao et al. (2020) approach resulted in low accuracy compared with the
variational approximation strategy developed here.

Our new convex solution for count response semiparametric regression also benefits real-
time fitting and inference. In Section 5 and Algorithm 2 of Luts & Wand (2015) we presented
an online variational algorithm for real-time count response semiparametric regression. How-
ever, storage of the predictor data and spline basis design matrices was required. In Section 4
of this article we present a new real-time algorithm for the same class of models that is purely
online, in that only sufficient statistics-type quantities need to be updated and stored. The
streaming data can be discarded after they are processed.

Notation used throughout this article is given in Section 1.1. Section 2 describes the spe-
cific count response semiparametric regression models to which we gear our methodologi-
cal development. The new variational inference scheme is described in Section 3. Real-time
semiparametric using online adaptations of our variational inference approach is described in
Section 4. Section 5 contains numerical results. We provide some conclusions in Section 6.

1.1 Notation

A real-valued function, which is defined and prominent in Jaakkola & Jordan (2000), and also
important here is that given by

λJJ(x) ≡
tanh(x/2)

4x
, x ∈ R. (1)

Scalar functions applied to a vector are evaluated in an element-wise fashion. For example,
cosh([3 11]T ) ≡ [cosh(3) cosh(11)]T . Similarly, if v is a column vector then v2 is the vector
of element-wise squares and ∥v∥ ≡

√
vTv is the Euclidean norm of v. The notation diag(v)

is used for the diagonal matrix containing the entries of v along its diagonal. If M is a d × d
square matrix then diagonal(M) is the d×1 vector containing the diagonal entries of M . Also,
1 is a column vector of ones. The symbol ind.∼ is shorthand for “independently distributed as”.

2 Model Description

Throughout this article we focus on the following count response Bayesian semiparametric
regression model:

yi|β,u, κ
ind.∼ Negative-Binomial

(
exp{(Xβ +Zu)i}, κ

)
, 1 ≤ i ≤ n,

αi| yi,β,u, κ
ind.∼ Pólya-Gamma

(
yi + κ, (Xβ +Zu)i + log(κ)

)
,

u|σ2
1, . . . , σ

2
r ∼ N(0, blockdiag(σ2

1 IK1 , . . . , σ
2
r IKr)), β ∼ N(0, σ2

βIp),

σj
ind.∼ Half-Cauchy(sσ), 1 ≤ j ≤ r,

and κ has a discrete prior with atoms K and probabilities p(κ), κ ∈ K.

(2)
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In (2) σβ > 0 and sσ > 0 are user-specified hyperparameters. Distributional notation used in
(2) is defined later in this section.

Model (2) is a variant of what Zhao et al. (2006) label general design generalized linear
mixed models. As explained in their Section 2, this is a very versatile structure and special
cases include nested random effects models for grouped (e.g. longitudinal) data, crossed ran-
dom effects models for item response data, generalized additive models, generalized additive
mixed models, varying-coefficients models and low-ranking kriging.

The distributional notation in (2) is such that x ∼ Negative-Binomial(µ, κ) denotes that the
random variable x has Negative Binomial distribution with mean µ > 0 and shape parameter
κ > 0 with probability mass function:

p(x) =
κκΓ(x+ κ)µx

Γ(κ)
(
κ+ µ

)x+κ
Γ(x+ 1)

, x = 0, 1, 2, . . . .

The Pólya-Gamma distributional notation matches that used in Polson et al. (2013) and is
described in Section S.1.2 of the online supplement. Also, x ∼ Half-Cauchy(s), with scale
parameter s > 0, means that the random variable x has density function

p(x) = 2/[π{1 + (x/s)2}s], x > 0.

Variational inferential tractability is aided by the replacement of σj ∼ Half-Cauchy(sσ) by

σ2
j |aj ∼ Inverse-Gamma(12 , 1/aj), aj ∼ Inverse-Gamma(12 , 1/s

2
σ), (3)

where x ∼ Inverse-Gamma(ξ, λ) means that x has density function

p(x) =
λξ

Γ(ξ)
x−ξ−1 exp

(
− λ/x

)
, x > 0.

If we let

y ≡ (y1, . . . , yn), α ≡ (α1, . . . , αn), σ2 ≡ (σ2
1, . . . , σ

2
r ) and a ≡ (a1, . . . , ar)

then model (2) has directed acyclic graph representation as shown in Figure 1.

κy(β,u)

α

σ2

a

Figure 1: Directed acyclic graph representation of model (2) with incorporation of the a = (a1, . . . , ar)
auxiliary variables as in (3). The y node is shaded to indicate that it contains observed data.

Model (2) is similar to the class of Negative Binomial response models considered by Luts
& Wand (2015). The differences are the presence of the Pólya-Gamma auxiliary variables and
the imposition of a discrete prior on the shape parameter κ.
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2.1 Extension to Covariance Matrix Parameters for Random Effects

To simplify the exposition, model (2) only contains scalar variance parameters. Extensions to
covariance matrix parameters arise in the case of random intercept and slope models. A simple
example of such a model having count responses is, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni,

yij |β0, β1, u0i, u1i
ind.∼ Negative-Binomial

(
exp

(
β0 + u0i + (β1 + u1i xij)

)
, κ
)

where [
u0i
u1i

] ∣∣∣Σ ind.∼ N(0,Σ)

and Σ is an unstructured 2 × 2 covariance matrix. Our new variational methodology has a
straightforward extension to models containing covariance matrix parameters.

3 Variational Inference Scheme

Consider the Negative Binomial response additive model model given by (2) with the auxiliary
variable replacement (3) and directed acyclic graph representation given in Figure 1. At its
most general level, variational approximation of the full joint posterior density function of the
parameters in (2) involves

p(β,u, κ,α,σ2,a|y) ≈ q(β,u, κ,α,σ2,a) (4)

where the q-density on the right-hand side of (4) is subject to specific restrictions. An initial
restriction to consider is one involving the following product density form:

q(β,u, κ,α,σ2,a) = q(β,u,a)q(σ2,α)q(κ). (5)

Such a restriction is an example of ordinary mean field variational Bayes (e.g. Wainwright &
Jordan, 2008) and, assuming tractability, the optimal q-densities can be found via coordinate
ascent (e.g. Algorithm 1 of Ormerod & Wand, 2010) based on consistency conditions such as

q∗(β,u,a) ∝ Eq(−(β,u,a))

[
log{p(β,u,a|rest)}

]
and q∗(κ) ∝ Eq(−κ)

[
log{p(κ|rest)}

]
.

Here, for example, Eq(−(β,u,a)) denotes expectation with respect to all q-densities other than
(β,u,a). Also, p(β,u,a|rest) denotes the conditional density function of (β,u,a) given the
rest of the random variables in the model and called the full conditional density function of
(β,u,a). Attributes of (2) such as Pólya-Gamma augmentation lead to closed formed expres-
sions for all but one of the full conditional density functions. The exception is p(κ|rest) which,
as shown in Section S.2 of the online supplement, does not admit a closed form expression.
This makes ordinary mean field variational Bayes impractical for model (2).

As a way of overcoming the difficulties with ordinary mean field variational Bayes we note
that

p(β,u, κ,α,σ2,a|y) = p(β,u,α,σ2,a|κ,y)p(κ|y) (6)

and then consider approximation of the right-hand side of (6) using the product density form:

q(β,u, κ,α,σ2,a) = q(β,u,a|κ)q(σ2,α|κ)q(κ). (7)

which differs from (5) due to its conditioning on κ. Noting that κ is confined to a finite set, we
apply a structured mean field variational Bayes approach to obtaining the optimal q-densities
under restriction (7). In essence, this involves performing ordinary mean field variational
Bayes for each κ ∈ K as if κ is fixed and then obtaining a weighted average of the resultant
q-densities that depends on the κ prior distribution and the variational-approximate marginal
log-likelihoods. A summary of this approach is given in Section 3.1 of Wand et al. (2011). From
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Algorithm 1 Structured mean field variational Bayes algorithm for achieving approximate Bayesian
inference for model (2) according to product density restriction (7).

Inputs: y (n× 1), response vector having all entries non-negative integers,

C
(
n×

(
p+

∑r
j=1 Kj

))
, combined design matrix,

σβ , sσ > 0, hyperparameters for the β and σj prior distributions

K, a finite set of positive numbers corresponding to the atoms of the prior

distribution of κ.

Initialize: µq(1/σ2
j |κ) > 0, 1 ≤ j ≤ r, and cq(α|κ) (n× 1) all entries positive, for each κ ∈ K.

For κ ∈ K:

Cycle:

µq(α|κ) ←− 2(y + κ1)⊙ λJJ(cq(α|κ))

M q(1/σ2|κ) ←− blockdiag(σ−2
β Ip, µq(1/σ2

1 |κ)IK1 , . . . , µq(1/σ2
r |κ)IKr )

Σq(β,u|κ) ←−
{
CT diag

(
µq(α|κ)

)
C +Mq(1/σ2|κ)

}−1

µq(β,u|κ) ←− Σq(β,u|κ)

{
1
2 (C

Ty − κCT1) + log(κ)CTµq(α|κ)

}
cq(α|κ) ←−

√
diagonal

(
CΣq(β,u|κ)C

T
)
+
(
Cµq(β,u|κ) − log(κ)1

)2
For j = 1, . . . , r :

λq(aj |κ) ←− µq(1/σ2
j |κ) + s−2

σ ; µq(1/aj |κ) ←− 1/λq(aj |κ)

λq(σ2
j |κ) ←− µq(1/aj |κ) +

1
2

{
∥µq(uj |κ)∥

2 + tr(Σq(uj |κ))
}

µq(1/σ2
j |κ) ←− (Kj + 1)/

(
2λq(σ2

j |κ)
)

ℓq(κ)←− 1
2µ

T
q(β,u|κ)

(
CTy − κCT1

)
− (y + κ1)T log

{
cosh

(
1
2cq(α|κ)

)}
−
∥µq(β|κ)∥2 + tr(Σq(β|κ))

2σ2
β

+ 1
2 log |Σq(β,u|κ)|

For j = 1, . . . , r :

ℓq(κ)←− ℓq(κ) + µq(1/σ2
j |κ)
{
λq(σ2

j |κ) − µq(1/aj |κ) − 1
2∥µq(uj |κ)∥

2 − 1
2 tr
(
Σq(uj |κ)

)}
+µq(1/aj |κ)

(
λq(aj |κ) − s−2

σ

)
− 1

2 (Kj + 1) log
(
λq(σ2

j |κ)
)
− log

(
λq(aj |κ)

)
until the increase in ℓq(κ) is negligible.

ℓ(κ)←− ℓq(κ) + 1T log{Γ(y + κ1)}+ n
[
1
2κ log(κ)− log(2)κ− log{Γ(κ)}

]
− 1

2 log(κ)(y
T1)

Outputs:
{
µq(β,u|κ),Σq(β,u|κ), λq(σ2

j |κ), ℓ(κ) : κ ∈ K, 1 ≤ j ≤ r
}

Section 10.1.1 of Bishop (2006), each individual (over κ ∈ K) mean field optimization problem
is convex. Also, induced factorization theory (e.g. Bishop, 2006; Section 10.2.5) implies that
we have the additional product density forms q(β,u,a|κ) = q(β,u|κ)q(a|κ) and q(σ2,α|κ) =
q(σ2|κ)q(α|κ) even though these are not imposed at the outset.

Algorithm 1 describes a suite of coordinate descent algorithms for obtaining, iteratively,
the parameters of the optimal q-densities. It uses the following definitions:

C ≡ [X Z]

and
uj is the Kj × 1 block of u according to the partition u = [uT

1 · · · uT
r ]

T . (8)

It also involves the λJJ function defined by (1).
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Based on the output from Algorithm 1 and the structured mean field variational Bayes
formulae given in Section 3.1 of Wand et al. (2011), the approximate posterior distributions of
the model parameters are obtained as follows:

q∗(κ) =
p(κ)ℓ(κ)∑

κ′∈K
p(κ′)ℓ(κ′)

, κ ∈ K,

q∗(β,u) =
∑
κ∈K

q∗(κ)
∣∣2πΣq(β,u|κ)

∣∣−1/2

× exp

{
−1

2

([
β
u

]
− µq(β,u|κ)

)T

Σ−1
q(β,u|κ)

([
β
u

]
− µq(β,u|κ)

)}
and

q∗(σ2
j ) =

∑
κ∈K


q∗(κ)λ

(Kj+1)/2

q(σ2
j |κ)

Γ
(
1
2(Kj + 1)

)
 (σ2

j )
−(Kj+1)/2−1 exp

(
−
λq(σ2

j |κ)

σ2
j

)
, σ2

j > 0, 1 ≤ j ≤ r.

3.1 Streamlined Variational Inference Alternatives

In grouped data situations, the sub-blocks of the Z matrix corresponding to random effects
typically are quite sparse. Algorithm 1 is still valid for such Z matrices but, for large numbers
of groups, tends to be inefficient when applied naı̈vely. Instead streamlined variational infer-
ence alternatives, which take advantage of sparse structure in Z matrices, are recommended.
Lee & Wand (2016) provides streamlined variational methodology for binary response semi-
parametric regression models for grouped data. The same ideas apply to the count response
setting treated here. The details will appear in the first author’s upcoming doctoral disserta-
tion.

4 Real-Time Count Response Semiparametric Regression

The structured mean field variational Bayes approach used in Algorithm 1 also lends itself to
online fitting of streaming data. This allows real-time count response semiparametric regres-
sion. Moreover, unlike in Luts & Wand (2015), this new approach has the attractive aspects of
only requiring low-dimensional sufficient statistics quantities to be stored and updated. There
is no need to keep the full data in memory.

Our proposed algorithm for real-time count response semiparametric regression is similar
to that used in Section 3 of Luts et al. (2014) for real-time binary response semiparametric
regression. The main difference is the presence of the κ parameter and its finite set restriction.
The essence of the approach is to express each of q-density parameters in terms of sufficient
statistics quantities such as CTy. If the current sample size is n then

CTy =

n∑
i=1

ciyi where ci ≡ ith row of C.

When a new observation arrives with response value ynew and corresponding design matrix
row cnew then the

CTy sufficient statistic is incremented by cnewynew.

Similarly, for each κ ∈ K, the

yT log{cosh(12cq(α|κ))} sufficient statistic is incremented by ynew log{cosh(12c(α|κ)new)}
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Algorithm 2 Online structured mean field variational Bayes algorithm for achieving real-times ap-
proximate Bayesian inference for model (2) according to product density restriction (7).

1. Perform batch-based tuning runs analogous to those described in Algorithm 2’ of Luts, Broderick
& Wand (2014) and determine a warm-up sample size nwarm for which convergence is validated.

2. Set ywarm and Cwarm to be the response vector and design matrix and, for each κ ∈ K, let
cq(α|κ) be the vector of Pólya-Gamma variational tilting parameters, based on the first nwarm

observations. Then set n ← nwarm, yT1 ← yT
warm1, CT1 ← CT

warm1, CTy ← CT
warmywarm.

For each κ ∈ K set 1T log{Γ(y + κ1)} ←− 1T log{Γ(ywarm + κ1)}, CTλJJ(cq(α|κ)) ←−
CT

warmλJJ(cq(α|κ)) and similar sufficient statistics quantities that appear in Step 3 below. Also,
set µq(β,u|κ), Σq(β,u|κ), µq(1/σ2

u1|κ), . . . , µq(1/σ2
ur|κ) to be the values for these quantities obtained in

the batch-based tuning run with sample size nwarm.

3. Let q∗warm(κ), κ ∈ K, be the q-density of κ obtained from feeding ywarm, Cwarm, σβ and sσ into
Algorithm 1.

4. Cycle:

read in ynew and cnew ; n←− n+ 1

yT1←− yT1+ ynew ; CT1←− CT1+ cnew ; CTy ←− CTy + cnewynew

Obtain the atom set Kn ⊆ K for the current sample size such that the retained
atoms coax q∗(κ) to be more concentrated around the posterior mean of q∗warm(κ).
(A practical recommendation for this step is described in Section 4.1.)

For κ ∈ Kn:

1T log{Γ(y + κ1)} ←− 1T log{Γ(y + κ1)}+ log{Γ(ynew + κ)}

c(α|κ)new ←−
√
cTnewΣq(β,u|κ)cnew + {cTnewµq(β,u|κ) − log(κ)}2

CTλJJ(cq(α|κ))←− CTλJJ(cq(α|κ)) + λJJ(c(α|κ)new)cnew

CT
(
y ⊙ λJJ(cq(α|κ))

)
←− CT

(
y ⊙ λJJ(cq(α|κ))

)
+ ynewλJJ(c(α|κ)new)cnew

CT diag
(
λJJ(cq(α|κ))

)
C ←− CT diag

(
λJJ(cq(α|κ))

)
C + λJJ(c(α|κ)new)cnewc

T
new

CT diag
(
y ⊙ λJJ(cq(α|κ))

)
C ←− CT diag

(
y ⊙ λJJ(cq(α|κ))

)
C

+ynewλJJ(c(α|κ)new)cnewc
T
new

1T log{cosh( 12cq(α|κ))} ←− 1T log{cosh( 12cq(α|κ))}+ log{cosh( 12c(α|κ)new)}
yT log{cosh( 12cq(α|κ))} ←− yT log{cosh( 12cq(α|κ))}

+ynew log{cosh( 12c(α|κ)new)}
M q(1/σ2|κ) ←− blockdiag(σ−2

β Ip, µq(1/σ2
1 |κ)IK1

, . . . , µq(1/σ2
r |κ)IKr

)

Σq(β,u|κ) ←−
{
2CT diag

(
y ⊙ λJJ(cq(α|κ))

)
C

+ 2κCT diag
(
λJJ(cq(α|κ))

)
C +M q(1/σ2|κ)

}−1

µq(β,u|κ) ←− Σq(β,u|κ)

(
1
2 (C

Ty − κCT1)

+ 2 log(κ)
{
CT
(
y ⊙ λJJ(cq(α|κ))

)
+ κCTλJJ(cq(α|κ))

})
For j = 1, . . . , r :

λq(aj |κ) ←− µq(1/σ2
j |κ) + s−2

σ ; µq(1/aj |κ) ←− 1/λq(aj |κ)

λq(σ2
j |κ) ←− µq(1/aj |κ) +

1
2

{
∥µq(uj |κ)∥

2 + tr(Σq(uj |κ))
}

µq(1/σ2
j |κ) ←− (Kj + 1)/

(
2λq(σ2

j |κ)
)

continued on a subsequent page . . .

where
c(α|κ)new =

√
cTnewΣq(β,u|κ)cnew + {cTnewµq(β,u|κ) − log(κ)}2.
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and µq(β,u|κ) and Σq(β,u|κ) are the current q-density parameters of (β,u)|κ. Continuing in this
fashion, we arrive at Algorithm 2 for real-time count response semiparametric regression, and
only requiring low-dimensional sufficient statistics storage and updating.

Algorithm 2 continued. This is a continuation of the description of this algorithm that commences on
a preceding page.

ℓ(κ)←− 1
2µ

T
q(β,u|κ)

(
CTy − κCT1

)
− yT log

{
cosh

(
1
2cq(α|κ)

)}
−κ1T log

{
cosh

(
1
2cq(α|κ)

)}
−
∥µq(β|κ)∥2 + tr(Σq(β|κ))

2σ2
β

+ 1
2 log |Σq(β,u|κ)|

+1T log{Γ(y + κ1)}+ n
[
1
2κ log(κ)− log(2)κ− log{Γ(κ)}

]
− 1

2 log(κ)(y
T1)

For j = 1, . . . , r :

ℓ(κ)←− ℓ(κ) + µq(1/σ2
j |κ)
{
λq(σ2

j |κ) − µq(1/aj |κ) − 1
2∥µq(uj |κ)∥

2 − 1
2 tr
(
Σq(uj |κ)

)}
+µq(1/aj |κ)

(
λq(aj |κ) − s−2

σ

)
− 1

2 (Kj + 1) log
(
λq(σ2

j |κ)
)
− log

(
λq(aj |κ)

)
q∗(κ)←− p(κ) exp{ℓ(κ)}

/ ∑
κ′∈Kn

p(κ′) exp{ℓ(κ′)}

q∗(β,u)←−
∑
κ∈Kn

[
q∗(κ)|2πΣq(β,u|κ)|−1/2

× exp

{
− 1

2

([
β
u

]
− µq(β,u|κ)

)T

Σ−1
q(β,u|κ)

([
β
u

]
− µq(β,u|κ)

)}]
For j = 1, . . . , r :

q∗(σ2
j )←−

∑
κ∈Kn

q∗(κ)λ
(Kj+1)/2

q(σ2
j |κ)

Γ
(
1
2 (Kj + 1)

)
 (σ2

j )
−(Kj+1)/2−1 exp

(
−
λq(σ2

j |κ)

σ2
j

)
. σ2

j > 0,

Produce summaries based on q∗(β,u), q∗(κ) and q∗(σ2
j ), 1 ≤ j ≤ r.

until data no longer available or analysis terminated.

4.1 The Step of Algorithm 2 Involving the Reduced Atom Set Kn

When developing and testing Algorithm 2 we first looked into using the original atom set K
during the online updates. However, when K is kept fixed, there is a tendency for the κ prob-
ability mass to pile towards the left or right extremities of K which, in turn, adversely impacts
the quality of the q∗(β,u) and q∗(σ2

j ) approximations. We do not have an explanation for the
occurrence of this phenomenon. Some experimentation showed that the online q-densities of
the main model parameters could achieve similar behaviour to their batch counterparts if the
κ atoms were sequentially reduced and concentrated around the posterior mean of q∗warm(κ).
Further research on this aspect seems warranted. However, with practicality in mind, we de-
vised the following simple scheme for achieving such concentration. Given the skewed nature
of posterior distributions of positive-valued parameters, we work with logarithm of κ. Let
λ ≡ log(κ) and let q∗warm(λ) be the probability mass function of λ corresponding to q∗warm(κ).
Next let µλ

warm and σλ
warm denote the mean and standard deviation of q∗warm(λ). Asymptotic nor-

mality considerations dictate that most of the probability mass of q∗warm(λ) is in the interval(
µλ

warm − τσλ
warm, µ

λ
warm + τσλ

warm

)
where τ ≈ 3.

For n ≥ nwarm a reasonable away to coax q∗(κ) to be more concentrated around q∗warm(κ) is to set

Kn =
{
κ ∈ K : µλ

warm − τσλ
warm

√
nwarm/n ≤ log(κ) ≤ µλ

warm + τσλ
warm

√
nwarm/n

}
, (9)
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which is also based on standard asymptotic normality considerations. In our simulated data
assessment of Algorithm 2, we adopted (9) with τ = 3.5. Lastly, for very large n, we need to
guard against Kn becoming null. We suggest to cease the atoms reduction when the number
of atoms reaches a low value such as 5.

5 Numerical Results

We now evaluate and illustrate the performance of Algorithms 1 and 2 using both simulated
and actual data. Section 5.1 uses the same simulated data setting as Luts & Wand (2015) to
assess comparative accuracy and speed of Algorithm 1 against a Markov chain Monte Carlo
benchmark. In Section 5.2 we conduct a simulation-based assessment of Algorith 2. In this
study the real-time fits are compared with the more computationally expensive batch fits. As
with any simulation study, the results of Sections 5.1 and Section 5.2 are necessarily limited
in that they can only treat a few specific scenarios. In Section 5.3 we illustrate use of the
methodology for some actual data concerning pollen counts.

5.1 Simulated Data Assessment of Algorithm 1

Our simulated data assessment of Algorithm 1 involved data generated according to the fol-
lowing Negative Binomial additive model:

yi|xi1, xi2
ind.∼ Negative-Binomial

(
exp{ηtrue,1(x1i) + ηtrue,2(x2i)}

)
, κtrue), 1 ≤ i ≤ 500

where

ηtrue,1(x) = cos(4πx)+2x, ηtrue,2(x) = 0.4ϕ(x; 0.38, 0.08)−1.02x+0.018x2+0.08ϕ(x; 0.75, 0.03)

and ϕ(x;µ, σ) denotes the density function of the Normal distribution with mean µ and stan-
dard deviation σ, evaluated at x. We set κtrue = 3.8, which corresponds to a relatively high
amount of over-dispersion. The predictor data were generated according to

xi1, xi2
ind.∼ Uniform(0, 1), 1 ≤ i ≤ 500.

We used the following penalized spline model for estimation of ηtrue,1(x1) + ηtrue,2(x2):

β0 + β1x1 + β2x2 +

K1∑
k=1

u1kz1k(x1) +

K2∑
k=1

u2kz2k(x2), ujk
ind.∼ N(0, σ2

j ), j = 1, 2. (10)

Here z1k and z2k are canonical O’Sullivan spline bases as described in Section 4 of Wand &
Ormerod (2008). The basis sizes were K1 = K2 = 17. This set-up is an r = 2 special case of
model (2) with, for example,

X =
[
1 x1i x2i

]
1≤i≤500

and Z =
[
z11(x1i) · · · z1K1(x1i) z21(x2i) · · · z2K2(x2i)

]
1≤i≤500

. (11)

We imposed the prior distributions:

β0, β1, β2
ind.∼ N(0, 105), σ1, σ2

ind.∼ Half-Cauchy(105) and p(κ) ∝ exp(−κ/100), κ ∈ K,

where the atom setK is a geometric sequence of size 50 between κtrue/10 and 10κtrue. We fitted
the special case of model (2), corresponding to (10) and (11), via Algorithm 1. The convergence
was assessed by monitoring the relative change in log{p(y; q|κ)}, with a stopping criterion set
at 10−10. One hundred simulation replications were performed.

To facilitate accuracy assessment we also obtained fits based on a Markov chain Monte
Carlo approach. This was achieved using the JAGS Bayesian inference engine via the R pack-
age rjags (Plummer, 2025). For each replication, chains of length 10000 were obtained. The first
5000 values were discarded as burn-in Then, thinning by a factor of 5 was applied, leading to
a retained samples of size of 1000.
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Figure 2: Boxplots of accuracy scores, as defined by (12), for the Algorithm 1 simulation study.

5.1.1 Assessment of Accuracy

The accuracy score for a structured mean field variational Bayes approximate posterior density
function q∗(θ) of a generic continuous parameter θ is defined as

accuracy(q∗) = 100

(
1− 1

2

∫ ∞

−∞

∣∣q∗(θ)− p(θ|y)
∣∣dθ)%. (12)

For the discrete parameter κ, an analogous definition applies with the integral replaced by the
sum over K. The density p(θ|y) was estimated from the Markov chain Monte Carlo samples
for θ using the bkde() and dpik() kernel density estimation functions within the R package
KernSmooth (Wand & Ripley, 2024).

Figure 2 displays the boxplots of the accuracy scores for estimation of the function exp(ηtrue,1+
ηtrue,2) evaluated at the sample quartiles of the x1i and x2i values. We use the notation Qk,
k = 1, 2, 3, to denote the quartiles. Accuracy scores for σ2

1, σ
2
2 and κ were also obtained. The

boxplots in Figure 2 indicate satisfactory accuracies for this simulation setting. When com-
pared with Figure 4 of Luts & Wand (2015), improvements over that article’s semiparametric
mean field variational Bayes approach are observed, with the most notable gain being for κ.

Figure 3 shows the accuracy costs of the mean field approximation by comparing the q-
density functions with those based on the Markov chain Monte Carlo for a randomly chosen
replication. To aid visualisation we replaced the κ probability mass functions by polygons
formed by joining each of the the atom/probability pairs. The polygons were then normalized
to have areas under the curve equal to 1. It can be seen that variational approximate posterior
densities are nearly as wide as the Markov chain Monte Carlo counterparts for the functions
evaluated at the quartiles, and also centered about true values. However, some inaccuracy is
apparent. The discrete densities of κ obtained via Algorithm 1 and Markov chain Monte Carlo
and are very similar to each other and centered around κtrue.

5.1.2 Assessment of Speed

The execution time of Markov chain Monte Carlo represents a significant bottleneck in Bayesian
analysis, which is one of the main motivations for exploring faster alternatives such as vari-
ational approximations. Algorithm 1 requires achieving convergence of |K| variational algo-
rithms, where |K| is the cardinality of K. We recommend the use of warm starts when march-
ing, in order, through the κ atoms to accelerate convergence and thus reduce processing time.
The overall computational burden is linear in |K|, and appropriate choice of the κ prior can
help prevent excessively long run times. That said, our method achieves very good speed. The
average (standard deviation) elapsed time of the two methods across all 100 simulated datasets
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Figure 3: Illustrations of the accuracy of the structured mean field variational Bayes (MFVB) posterior
density functions and probability mass function approximations obtained from Algorithm 1. In each
panel, the MFVB approximate density functions or probability mass function for a quantity of interest
is compared with its Markov chain Monte Carlo (MCMC) counterpart. The percentage is the accuracy
score according to (12). The vertical lines indicate true values according to the simulation set-up.

is 117.8 (1.876) seconds for the Markov chain Monte Carlo approach, and 2.088 (0.1440) sec-
onds for Algorithm 1. The simulations were run in R (R Core Team, 2025), version 4.4.3, on a
machine with 12 cores and 24 gigabytes of random access memory.

5.2 Simulated Data Assessment of Algorithm 2

To assess the efficacy of Algorithm 2 we simulated data sets corresponding to the Negative
binomial nonparametric regression model

yi|xi
ind.∼ Negative-Binomial

(
ηtrue(xi), κtrue

)
, 1 ≤ i ≤ nfull, (13)

where
ηtrue(x) ≡ 0.3ϕ(x; 0.2, 0.08)− 0.3ϕ(x; 0.65, 0.23) + 0.4ϕ(x; 0.45, 0.08)

where ϕ(·;µ, σ) is as defined earlier in this section. In (13) nfull signifies the full real-time data
sample size. In all of our examples we set nfull = 1000. The predictor data were generated
according to xi

ind.∼ Uniform(0, 1).
Bayesian penalized splines of the form

β0 + β1 x+

K∑
k=1

ukzk(x), uk|σ2 ind.∼ N(0, σ2),

were used to model and estimate ηtrue. The zk spline basis functions are analogous to those
described in Section 5.1. In this real-time example we used 35 interior knots, which entails use
of K = 37 basis functions. This set-up corresponds to the r = 1 special case of Algorithms 1
and 2. We also imposed the prior distributions:

β0, β1
ind.∼ N(0, 105), σ ∼ Half-Cauchy(105) and p(κ) ∝ exp(−κ/100), κ ∈ K
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where K is the geometric sequence of length 50 between κtrue/10 and 10κtrue.
Real-time data scenarios based on (13) were simulated for each of

κtrue ∈ {5, 10, 20, 40},

corresponding to count responses with varying amounts of overdispersion. Three replications
of (xi, yi), 1 ≤ i ≤ nfull, data were generated within the R computing environment according
to the command set.seed(s) with s set to each of 1, 2 and 3. These data were then fed
into Algorithm 2 with samples of size n = nwarm, nwarm + 1, . . . , nfull. In all but one case we used
nwarm = 100 and achieved good convergence. The exception was κtrue = 20 with the third seed
value, in which case the longer warm-up of nwarm = 200 was warranted. The same sequential
data sets were fed into Algorithm 1 to allow comparison between the online fits and those
obtained via ordinary batch processing.

The results of our simulation-based assessment of Algorithm 2 are presented as movies
within the supplementary material. 1 Figure 4 shows some of the frames from the first κtrue = 5
movie.
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Figure 4: Some illustrative comparisons for κtrue = 5 between the real-time Negative Binomial nonpara-
metric regression estimates based on Algorithm 2 with the batch counterparts based on Algorithm 1.
The solid curves correspond to posterior means. The dashed curves correspond to pointwise approximate
95% credible intervals. The scatterplots correspond to the current regression data.

Figure 4 and, in particular, the movies show that Algorithm 2’s real-time inference for
the mean structure is quite similar to that obtained with successive batch fitting. Clearly, the
former is preferable from a speed standpoint in streaming data applications. High quality
real-time inference for the κ nuisance parameter appears to be out of reach. The strategy used
in Figure 4 and the movies, and described in Section 4.1, aims to ensure that the running
approximate posterior distributions of κ are reasonable enough to not adversely impact real-
time estimation of the mean structure.

1For this pre-publication version of this article, the movies are on the following web-site:
https://matt-p-wand.net/M+Wmovies.html

12



5.3 Application to Pollen Counts Data

This application involves data daily ragweed pollen counts in Kalamazoo, U.S.A., during the
1991–1994 ragweed seasons. The data correspond to the study described in Stark et al. (1997).
The model is of the form

yi
ind.∼ Negative-Binomial

{
exp

(
β0 + β1 x1i + β2 x2i + β3 x3i + ηzi(x4i)

)
, κ
}
, 1 ≤ i ≤ n, (14)

where n = 334 corresponds to the total number of days when ragweed pollen was in season
during 1991–1994. The variables in (14) are ragweed pollen count on the ith day (yi), tem-
perature residual on the ith day (x1i), indicator of significant rain on the ith day (x2i), wind
speed in knots on the ith day (x3i), day number of ragweed pollen season for the current
year on which yi was recorded (x4i) and a categorical variable for the year in which yi was
recorded (one of 1991, 1992, 1993 or 1994) (zi). Here temperature residuals are the residuals
from fitting penalized splines, each having 5 effective degrees of freedom, to temperature (in
degrees Fahrenheit) versus day number for each ragweed pollen season. Mixed model-based
penalized splines were used for modelling the ηz , z ∈ {1991, 1992, 1993, 1994}. The variance
parameters used in each of the four penalized spline components are σ2

1 , σ2
2 , σ2

3 and σ2
4 . The

full model is

yi|β,u, κ
ind.∼ Negative-Binomial

(
exp{(Xβ +Zu)i}, κ

)
, β ∼ N(0, 1010I)

u|σ2
1, . . . , σ

2
4 ∼ N

(
0, blockdiag(σ2

1 IK1 , . . . , σ
2
4 IK4)

)
,

σ1, . . . , σ4
ind.∼ Half-Cauchy(105), p(κ) ∝ exp(−κ/100), κ ∈ K

(15)

where K is a geometric sequence of length 100 between 0.5 to 50. The design matrices in (15)
are

X =

1 x11 · · · x41 I(z1=1992) x41I(z1=1992) · · · I(z1=1994) x41I(z1=1994)
...

...
...

...
...

...
...

...
...

1 x1n · · · x4n I(zn=1992) x4nI(zn=1992) · · · I(zn=1994) x4nI(zn=1994)


and Z = [Z1991Z1992Z1993Z1994] where Z1991 is an n × Kj matrix with (i, k) entry equal to
I(zi = 1991)zk(x4i) and Z1992, . . . ,Z1994 are defined analogously. The zk basis functions are of
the same type used earlier in this section. The β and u vectors contain the coefficients to match
the columns of X and Z respectively. Lastly, the spline basis sizes were K1 = K2 = K3 = 17
and K4 = 16. This difference in the spline basis sizes is due to the numbers days in the ragweed
pollen season varying in length between the four years. They range from 78 for year 1994 to
92 to year 1991.

Model (15) is an r = 4 special case of (2). We used Algorithm 1 to perform approximate
Bayesian inference.
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Figure 5: Comparison of posterior density function and probability mass function approximations based
on structured mean field variational Bayes (MFVB) and Markov chain Monte Carlo (MCMC) for four
of the parameters in model (15).
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Figure 6: Structured mean field variational Bayes (MFVB) and Markov chain Monte Carlo (MCMC)
posterior means (solid lines) and 95% pointwise credible intervals (dashed lines) for estimation of the
functions η1991, . . . , η1994 in the model conveyed by (14) and (15).

Figure 5 shows the posterior density functions for the parameters associated with the lin-
ear effects of the quantitative explanatory variables considered in the model. On the right, the
posterior probability distribution function of κ is represented. It can be noticed that all the
the coefficient parameters are significantly different from zero. The variational approximate
density functions for the linear effects appear narrower than the Markov chain Monte Carlo
ones; the approximate posterior distribution of κ appears slightly shifted to the right com-
pared to the exact one. Both distributions assign posterior mass to values ranging from 2 to 5,
supporting the suitability of the Negative-Binomial response model.

The trend of the linear predictor over the days of the season, shown separately for each
year, is displayed in Figure 6. Solid lines indicate the posterior mean, and dashed lines the
posterior pointwise credible intervals at level 95%. The four curves exhibit similar behavior,
with a peak around the 20th day of the season, followed by a decreasing trend.

6 Conclusion

Our convex solution to the count response semiparametric regression problem described here
offers stability and real-time processing advantages. The inferential accuracy is often reason-
able. However, it also prone to some inaccuracy and this aspect needs to be taken into account
when trading off against speed. Even though we have focussed on semiparametric regression
models, the same general approach applies to numerous other count response settings.
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Wand, M.P., Ormerod, J.T., Padoan, S.A. & Frühwirth, R. (2011). Mean field variational Bayes

15



for elaborate distributions. Bayesian Analysis, 6, 847–900.

Wand, M. & Ripley, B. (2024). KernSmooth: Functions for kernel smoothing supporting Wand
& Jones (1995). R package version 4-17. CRAN.R-project.org/package=KernSmooth.

Wand, M.P. and Yu, J.C.F. (2022). Density estimation via Bayesian inference engines. Advances
in Statistical Analysis, 106, 199–216.

Zhao, Y., Staudenmayer, J., Coull, B.A. and Wand, M.P. (2006). General design Bayesian gener-
alized linear mixed models. Statistical Science, 21, 35–51.

Zhou, M. Li, L., Dunson, D. & Carin, L. (2012). Lognormal and Gamma mixed Negative Bi-
nomial regression. In Proceedings of the 29th International Conference on Machine Learning,
pp. 1343–1350.

16



Supplement for:
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S.1 Pólya-Gamma Distribution Definitions and Results

The Pólya-Gamma distribution plays an important role in this article’s variational inference
approach. In this section we provide relevant definitions and results.

S.1.1 The Gamma Distribution

A random variable x has a Gamma distribution with shape parameter α > 0 and rate parame-
ter β > 0, written

x ∼ Gamma(α, β),

if and only if its probability density function is

p(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0.

S.1.2 The Pólya-Gamma Distribution

A random variable x has a Pólya-Gamma distribution with shape parameter b > 0 and tilting
parameter c > 0, written

x ∼ Pólya-Gamma(b, c),

if and only if

x is equal in distribution to
1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

where
gk

ind.∼ Gamma(b, 1), k = 1, 2, . . .

Note that there is no closed form expression for the density function of a Pólya-Gamma(b, c)
random variable.

S.1.2.1 A Decomposition of the General Pólya Gamma Density Function

Let pPG( · ; b, c) denote the density function of a Pólya-Gamma(b, c) random variable. Then for
all x, b > 0 and c ∈ R:

pPG(x; b, c) = coshb(c/2) exp
(
−1

2c
2x
)
pPG(x; b, 0). (S.1)

This result corresponds to equation (5) of Polson et al. (2013).
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S.1.2.2 The Mean of a Pólya Gamma Random Variable

From Section 2.3 of Polson et al. (2013), if

x ∼ Pólya-Gamma(b, c) then E(x) =
b

2c
tanh(c/2) = 2bλJJ(c). (S.2)

S.2 Impracticality of Ordinary Mean Field Variational Bayes

The impracticality of ordinary mean field variational Bayes for model (2) stems from the fol-
lowing fact mentioned in Section S.1: Pólya Gamma density functions do not admit closed
forms. In this section we provide relevant details.

From Figure 1, the Markov blanket of κ is {y,β,u,α}. Therefore

p(κ|rest) = p(κ|y,β,u,α) ∝ p(y|β,u, κ)p(α|y,β,u, κ)p(κ).

The factors p(y|β,u, κ) and p(κ) have simple closed form expressions, but

p(α|y,β,u, κ) =
n∏

i=1

pPG

(
αi; yi + κ, (Xβ +Zu)i + log(κ)

)
depends on intractable Pólya-Gamma density functions. This hinders practical mean field
variational Bayes for model (2).

S.3 The Structured Mean Field Variational Bayes Alternative

The structured mean field variational Bayes alternative goes back to machine learning articles
such as Saul & Jordan (1996) and Jaakkola (2001) with application to, for example, coupled
hidden Markov models. Section 3.1 of Wand et al. (2011) describes a structured mean field
variational Bayes paradigm for Bayesian hierarchical models within the field of statistics. The
derivations and subsequent optimal q-density formulae given in Section 3.1 of Wand et al.
(2011) are the basis for Algorithm 1.

S.4 Algorithm 1 Justification

We now justify the steps given in Algorithm 1. There are two main components: (1) the optimal
q-density derivations which lead to the Algorithm 1’s coordinate ascent scheme and (2) the
explicit expression for the marginal log-likelihood conditional on κ, which form the basis for
the structured mean field variational Bayes posterior density approximations.

Throughout this section we let ‘rest’ denote all random variable in the model other then the
random vector of current interest. Also, Eq(−θ) signifies expectation with respect to the joint
q-density function of all model parameters but with θ omitted.

S.4.1 Optimal q-Density Derivations

We now provide the derivation of each of the optimal q-density functions.

Derivation of q∗(α|κ)

It follows from the second line of (2) that

log{p(α|rest)} =
n∑

i=1

log
{
pPG

(
αi; yi + κ, (Xβ +Zu)i − log(κ)

)}
.
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In view of (S.1) we then have

log{p(αi|rest)}= log
{
pPG

(
αi; yi + κ, (Xβ +Zu)i − log(κ)

)}
=−1

2

{
(Xβ +Zu)i − log(κ)

}2
αi + log{pPG(αi; yi + κ, 0)}+ const

where ‘const’ denotes terms that do not depend on αi. Therefore,

Eq(−(αi,κ))

[
log{p(αi|rest)}

]
=−1

2Eq(β,u|κ)
[{
(Xβ +Zu)i − log(κ)

}2]
αi

+ log{pPG(αi; yi + κ, 0)}+ const.

It quickly follows that, for each 1 ≤ i ≤ n,

q∗(αi|κ) is the Pólya-Gamma
(
yi + κ, cq(αi|κ)

)
density function

where
cq(αi|κ) ≡

√
Eq(β,u|κ)

[{
(Xβ +Zu)i − log(κ)

}2]
and that

q∗(α|κ) =
n∏

i=1

q∗(αi|κ).

Next note that

Eq(β,u|κ)
[{
(Xβ +Zu)i − log(κ)

}2
=Varq(β,u|κ)

(
C[βT uT ]T )i

)
+
{(

CEq(β,u|κ)[β
T uT ]T

)
i
− log(κ)

}2
=
(
CΣq(β,u|κ)C

T
)
ii
+
{(

Cµq(β,u|κ)
)
i
− log(κ)

}2
=
(

diagonal
(
CΣq(β,u|κ)C

T
)
+
(
Cµq(β,u|κ) − log(κ)1

)2)
i
.

Hence

cq(αi|κ) =

√(
diagonal

(
CΣq(β,u|κ)C

T
)
+
(
Cµq(β,u|κ) − log(κ)1

)2)
i
.

From (S.2),
µq(αi) = 2(yi + κ)λJJ

(
cq(αi|κ)

)
, 1 ≤ i ≤ n,

and so
µq(α|κ) = 2(y + κ1)⊙ λJJ

(
cq(α|κ)

)
with

cq(α|κ) =

√
diagonal

(
CΣq(β,u|κ)C

T
)
+
(
Cµq(β,u|κ) − log(κ)1

)2
. (S.3)

Derivation of q∗(β,u|κ)

First note that the ith contribution to the likelihood part of (2), 1 ≤ i ≤ n, can be written

p(yi|β,u, κ) =
κκΓ(yi + κ) exp

(
(Xβ +Zu)i

)yi
Γ(κ)

(
κ+ exp

(
(Xβ +Zu)i

))yi+κ
Γ(yi + 1)

=
Γ(yi + κ)

Γ(κ)Γ(yi + 1)

exp
(
(Xβ +Zu)i − log(κ)

)yi{
1 + exp

(
(Xβ +Zu)i − log(κ)

)}κ+yi

=
Γ(yi + κ)

2yi+κΓ(κ)Γ(yi + 1)

exp
{
1
2(yi − κ)

(
(Xβ +Zu)i − log(κ)

)}
coshyi+κ

(
1
2

(
(Xβ +Zu)i − log(κ)

)) .

3



Then the full conditional density function of (β,u) is

p(β,u|rest) = p(β,u|y,α,σ2, κ) ∝ p(y|β,u, κ)p(α|y,β,u, κ)p(β)p(u|σ2)

=

(
n∏

i=1

p(yi|β,u, κ)pPG

(
αi; yi + κ, (Xβ +Zu)i − log(κ)

))
p(β)p(u|σ2)

∝

(
n∏

i=1

exp
{
1
2(yi − κ)

(
(Xβ +Zu)i − log(κ)

)}
coshyi+κ

(
1
2

(
(Xβ +Zu)i − log(κ)

))
× coshyi+κ

(
1
2

(
(Xβ +Zu)i − log(κ)

))
× exp

[
− 1

2

{
(Xβ +Zu)i − log(κ)

}2
αi

]
pPG(αi; yi + κ, 0)

)
p(β)p(u|σ2)

where the last step follows from (S.1). We then have

p(β,u|rest)∝

(
n∏

i=1

exp
[
1
2(yi − κ)(Xβ +Zu)i − 1

2

{
(Xβ +Zu)i − log(κ)

}2
αi

])

× exp

−∥β∥2
2σ2

β

−
r∑

j=1

∥uj∥2

2σ2
j


∝

(
n∏

i=1

exp
[
1
2(yi − κ)(Xβ +Zu)i + αi

{
log(κ)(Xβ +Zu)i − 1

2(Xβ +Zu)2i
}])

× exp

−∥β∥2
2σ2

β

−
r∑

j=1

∥uj∥2

2σ2
j


=exp

[{
1
2(y − κ1) + log(κ)α

}T
C

[
β
u

]
− 1

2

[
β
u

]T
CTdiag(α)C

[
β
u

]

−∥β∥
2

2σ2
β

−
r∑

j=1

∥uj∥2

2σ2
j

]

=exp




[
β
u

]

vec

([
β
u

] [
β
u

]T)

T  CT

{
1
2(y − κ1) + log(κ)α

}
−1

2vec
(
CTdiag(α)C + M̃

)


.

where
M̃ ≡ blockdiag(σ−2

β Ip, σ
−2
1 IK1 , . . . , σ

−2
r IKr).

Therefore,

Eq(−(β,u,κ))

[
log{p(β,u|rest)}

]

=


[
β
u

]
vec

([
β
u

] [
β
u

]T)

T  CT

{
1
2(y − κ1) + log(κ)µq(α|κ)

}
−1

2vec
(
CTdiag

(
µq(α|κ)

)
C +M q(1/σ2|κ)

) + const

where µq(α|κ) denotes the mean of the optimal q-density of α|κ and ‘const’ denotes terms that
do not depend on (β,u). It follows quickly that

q∗(β,u|κ) is the N
(
µq(β,u|κ),Σq(β,u|κ)

)
density function
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where
Σq(β,u|κ) ≡

{
CTdiag

(
µq(α|κ)

)
C +M q(1/σ2)

}−1

and
µq(β,u|κ) ≡ Σq(β,u|κ)C

T
{
1
2(y − κ1) + log(κ)µq(α|κ)

}
.

Derivation of q∗(σ2|κ)

Arguments similar to those given in Appendix C of Wand & Ormerod (2011) lead to

q∗(σ2|κ) =
r∏

j=1

q∗(σ2
j |κ)

where, for 1 ≤ j ≤ r,

q∗(σ2
j |κ) is the Inverse-Gamma

(
1
2(Kj + 1), µq(1/aj |κ) +

1
2

{
∥µq(uj |κ)∥

2 + tr(Σq(uj |κ))
})

density function. Note that µq(1/aj |κ) is the mean of 1/aj according to the optimal q∗-density
described next. Also, µq(uj |κ) and Σq(uj |κ) are the sub-matrices of µq(β,u|κ) and Σq(β,u|κ) ac-
cording to the partition of u given at (8). The reciprocal moment of σ2

j , according to q∗(σ2
j |κ),

is
µq(1/σ2

j |κ)
=

Kj + 1

2µq(1/aj |κ) + ∥µq(uj |κ)∥2 + tr(Σq(uj |κ))
.

Derivation of q∗(a|κ)

Steps provided by Appendix C of Wand & Ormerod (2011) lead to

q∗(a|κ) =
r∏

j=1

q∗(aj |κ)

where, for 1 ≤ j ≤ r,

q∗(aj |κ) is the Inverse-Gamma
(
1, µq(1/σ2

j |κ)
+ s−2

σ

)
density function. The reciprocal moment of aj , according to q∗(aj |κ), is

µq(1/aj |κ) =
1

µq(1/σ2
j |κ)

+ s−2
σ

.

S.4.2 The Approximate Marginal Log-Likelihood

The approximate marginal log-likelihood, conditional on κ, is

log{p(y|κ)}=Eq(−κ)

[
log{p(y,α,β,u,σ2,a|κ)} − log{q(α,β,u,σ2,a|κ)}

]
=Eq(−κ)

[
log{p(y|β,u, κ)p(α|y,β,u, κ)p(β,u|σ2, κ)p(σ2|a, κ)p(a|κ)}

− log{q(α|κ)q(β,u|κ)q(σ2|κ)q(a|κ)}
]

=Eq(−κ)

[
log{p(y|β,u, κ)}+ log{p(α|y,β,u, κ)} − log{q(α|κ)}

+ log{p(β,u|σ2, κ)} − log{q(β,u|κ)}+ log{p(σ2|a, κ)} − log{q(σ2|κ)}

+ log{p(a|κ)} − log{q(a|κ)}
]
.

Simplification of Eq(−κ)

[
log{p(y|β,u, κ)}

]
5



Since

p(yi|β,u, κ) =
Γ(yi + κ)

2yi+κΓ(κ)Γ(yi + 1)

exp
{
1
2(yi − κ)

(
(Xβ +Zu)i − log(κ)

)}
coshyi+κ

(
1
2

(
(Xβ +Zu)i − log(κ)

))
we have

log{p(y|β,u, κ)}=
n∑

i=1

[
log{Γ(yi + κ)} − (yi + κ) log(2)− log{Γ(yi + 1)}

+1
2(yi − κ)

(
(Xβ +Zu)i − log(κ)

)
−(yi + κ) log

{
cosh

(
1
2

(
(Xβ +Zu)i − log(κ)

))} ]
− n log{Γ(κ)}.

This leads to

Eq(−κ)

[
log{p(y|β,u, κ)}

]
=−(yT1) log(2)− 1T log{Γ(y + 1)}+ 1T log{Γ(y + κ1)}

+n
[
1
2κ log(κ)− log(2)κ− log{Γ(κ)}

]
−1

2(y
T1) log(κ) + 1

2µ
T
q(β,u|κ)

(
CTy − κCT1

)
−

n∑
i=1

Eq(−κ)

[
(yi + κ) log

{
cosh

(
1
2

(
(Xβ +Zu)i − log(κ)

))}]
.

Simplification of Eq(−κ)

[
log{p(α|y,β,u, κ)} − log{q(α|κ)}

]
First note that

log{p(α|y,β,u, κ)} − log{q(α|κ)}

=

n∑
i=1

[
log
{
pPG(αi; yi + κ, (Xβ +Zu)i − log(κ))

}
− log

{
pPG(αi; yi + κ, cq(αi|κ))

}]
.

Since

log{pPG(αi; yi + κ, (Xβ +Zu)i − log(κ))}

= (yi + κ) log
{
cosh

(
1
2

(
(Xβ +Zu)i − log(κ)

))}
− 1

2

(
(Xβ +Zu)i − log(κ)

)2
αi

− log{pPG(αi; yi + κ, 0)}

and

log{pPG(αi; yi + κ, cq(αi|κ)}

= (yi + κ) log
{
cosh

(
1
2cq(αi|κ)

)}
− 1

2c
2
q(αi|κ)αi − log{pPG(αi; yi + κ, 0)}

we get the cancellation of the log{pPG(αi; yi+κ, 0)} terms and the following explicit expression
for the log-density difference:

log
{
pPG(αi; yi + κ, (Xβ +Zu)i − log(κ))

}
− log

{
pPG(αi; yi + κ, cq(αi|κ))

}
= (yi + κ) log

{
cosh

(
1
2

(
(Xβ +Zu)i − log(κ)

))}
− (yi + κ) log

{
cosh

(
1
2cq(αi|κ)

)}
+1

2αi

{
c2q(αi|κ) −

(
(Xβ +Zu)i − log(κ)

)2}
.

The cancellation of the log{pPG(αi; yi+κ, 0)} terms is very important from a practical standpoint
since pPG(αi; yi + κ, 0) does not admit a closed form.
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We then have

Eq(−κ)

[
log{p(α|y,β,u, κ)} − log{q(α|κ)}

]
=

n∑
i=1

Eq(−κ)

[
(yi + κ) log

{
cosh

(
1
2

(
(Xβ +Zu)i − log(κ)

))} ]
−(y + κ1)T log

{
cosh

(
1
2cq(α|κ)

)}
+ 1

2c
T
q(α|κ)diag{µq(α|κ)}cq(α|κ)

−1
2

n∑
i=1

Eq(−κ)

{
αi

(
(Xβ +Zu)i − log(κ)

)2}
.

Simplification of Eq(−κ)

[
log{p(β,u|σ2, κ)} − log{q(β,u|κ)}

]
For this contribution, we have

log{p(β,u|σ2, κ)} − log{q(β,u|κ)}=−1
2p log(σ

2
β)− 1

2

r∑
j=1

Kj log(σ
2
j )

−∥β∥
2

2σ2
β

−
r∑

j=1

∥uj∥2

2σ2
j

+ 1
2 log |Σq(β,u|κ)|

+1
2

([
β
u

]
− µq(β,u|κ)

)T

Σ−1
q(β,u|κ)

([
β
u

]
− µq(β,u|κ)

)
.

We then obtain

Eq(−κ)

[
log{p(β,u|σ2, κ)} − log{q(β,u|κ)}

]
= −1

2p log(σ
2
β)− 1

2

r∑
j=1

KjEq(−κ){log(σ2
j )}

−
∥µq(β,u|κ)∥2 + tr(Σq(β,u|κ))

2σ2
β

− 1
2

r∑
j=1

µq(1/σ2
j |κ)
{
∥µq(uj |κ)∥

2 + tr
(
Σq(uj |κ)

)}

+1
2 log |Σq(β,u|κ)|+ 1

2p+
1
2

r∑
j=1

Kj .

Simplification of log{p(σ2|a, κ)} − log{q(σ2|κ)}

Simple manipulations give

log{p(σ2|a, κ)} − log{q(σ2|κ)}=
r∑

j=1

[
− 1

2 log(aj)−
1
2 log(π)− 1/(σ2

jaj)

−1
2(Kj + 1) log

(
λq(σ2

j |κ)
)
+ log

{
Γ
(
1
2(Kj + 1)

)}
+1

2 Kj log(σ
2
j ) + λq(σ2

j |κ)
/
σ2
j

]
where

λq(σ2
j |κ)
≡ µq(1/aj |κ) +

1
2

{
∥µq(uj |κ)∥

2 + tr(Σq(uj |κ))
}
.
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Therefore

Eq(−κ)

[
log{p(σ2|a, κ)} − log{q(σ2|κ)}

]
=−1

2r log(π) +
r∑

j=1

log
{
Γ
(
1
2(Kj + 1)

)}

−1
2

r∑
j=1

Eq(−κ){log(aj)}+ 1
2

r∑
j=1

KjEq(−κ){log(σ2
j )}

+
r∑

j=1

[
λq(σ2

j |κ)
µq(1/σ2

j |κ)
− µq(1/σ2

j |κ)
µq(1/aj |κ)

−1
2(Kj + 1) log

(
λq(σ2

j |κ)
)]
.

Simplification of Eq(−κ)

[
log{p(a|κ)} − log{q(a|κ)}

]
Lastly, we have

log{p(a|κ)} − log{q(a|κ)}=
r∑

j=1

[
− log(sσ)− 1

2 log(π) +
1
2 log(aj)− 1/(ajs

2
σ)

− log
(
λq(aj |κ)

)
+ λq(aj |κ)µq(1/aj |κ)

]
where

λq(aj |κ) ≡ µq(1/σ2
j |κ)

+ s−2
σ .

The required q-density expectation is

Eq(−κ)

[
log{p(a|κ)} − log{q(a|κ)}

]
=−r log(sσ)− 1

2 r log(π) +
1
2

r∑
j=1

Eq(−κ){log(aj)}

+
r∑

j=1

[
λq(aj |κ)µq(1/aj |κ) − µq(1/aj |κ)

/
s2σ − log

(
λq(aj |κ)

)]
.

Fully Simplified log{p(y|κ)} Expression

Combining each of the simplified contributions, we obtain

log{p(y|κ)}= 1T log{Γ(y + κ1)}+ n
[
1
2κ log(κ)− log(2)κ− log{Γ(κ)}

]
−1

2(y
T1) log(κ) + 1

2µ
T
q(β,u|κ)

(
CTy − κCT1

)
−(y + κ1)T log

{
cosh

(
1
2cq(α|κ)

)}
−
∥µq(β|κ)∥2 + tr(Σq(β|κ))

2σ2
β

−1
2

r∑
j=1

µq(1/σ2
j |κ)
{
∥µq(uj |κ)∥

2 + tr
(
Σq(uj |κ)

)}
+ 1

2 log |Σq(β,u|κ)|

+
r∑

j=1

{
λq(σ2

j |κ)
µq(1/σ2

j |κ)
− µq(1/σ2

j |κ)
µq(1/aj |κ) −

1
2(Kj + 1) log

(
λq(σ2

j |κ)
)

+λq(aj |κ)µq(1/aj |κ) − µq(1/aj |κ)
/
s2σ − log

(
λq(aj |κ)

)}
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+1
2c

T
q(α|κ)diag{µq(α|κ)}cq(α|κ) − 1

2

n∑
i=1

Eq(−κ)

{(
(Xβ +Zu)i − log(κ)

)2}

−(yT1) log(2)− 1T log{Γ(y + 1)} − 1
2p log(σ

2
β) +

1
2p+

1
2

r∑
j=1

Kj

−r log(π)− r log(sσ) +

r∑
j=1

log
{
Γ
(
1
2(Kj + 1)

)}
which leads to the expression

log{p(y|κ)}= ℓ(κ) + 1
2c

T
q(α|κ)diag{µq(α|κ)}cq(α|κ) − 1

2

n∑
i=1

Eq(−κ)

{
αi

(
(Xβ +Zu)i − log(κ)

)2}
+const

where ‘const’ denotes terms that do not involve κ or q-density parameters and

ℓ(κ)≡ 1T log{Γ(y + κ1)}+ n
[
1
2κ log(κ)− log(2)κ− log{Γ(κ)}

]
−1

2(y
T1) log(κ) + 1

2µ
T
q(β,u|κ)

(
CTy − κCT1

)
−(y + κ1)T log

{
cosh

(
1
2cq(α|κ)

)}
−
∥µq(β|κ)∥2 + tr(Σq(β|κ))

2σ2
β

−1
2

r∑
j=1

µq(1/σ2
j |κ)
{
∥µq(uj |κ)∥

2 + tr
(
Σq(uj |κ)

)}
+ 1

2 log |Σq(β,u|κ)|

+

r∑
j=1

{
λq(σ2

j |κ)
µq(1/σ2

j |κ)
− µq(1/σ2

j |κ)
µq(1/aj |κ) −

1
2(Kj + 1) log

(
λq(σ2

j |κ)
)

+λq(aj |κ)µq(1/aj |κ) − µq(1/aj |κ)
/
s2σ − log

(
λq(aj |κ)

)}
.

Lastly, we note that the

cTq(α|κ)diag{µq(α|κ)}cq(α|κ) and
n∑

i=1

Eq(−κ)

{
αi

(
(Xβ +Zu)i − log(κ)

)2}
terms cancel with each other in the q-density updates, and we have the simpler marginal log-
likelihood expression

log{p(y|κ)} = ℓ(κ) + const.
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